
1

Rapport de projet collectif

Jouer au morpion avec un robot
Projet N°13 – Tuteur : N. RUTY

ORCESI Astrid
PRABLANC Pierre

ROCHE Fanny
SIRINELLI Olivier

Année Universitaire : 2013 - 2014

2

REMERCIEMENTS

Nous remercions tout particulièrement M. RUTY, notre tuteur, qui a su nous conseiller

et nous diriger dans l'élaboration du projet. Ce projet n’aurait sans doute pas été le même sa

formidable imprimante 3D qui a imprimé nos magnifiques pions.

 Nous tenons également à remercier M. FRISTOT et M.VOISIN-FRADIN pour leur

encadrement tout au long de la réalisation du projet.

 Il aurait été bien difficile de monter le robot, de l’alimenter et donc de le faire

fonctionner sans l’aide précieuse de tout le personnel présent au 3
e
 étage de Minatec, un grand

merci à eux pour leur patience face à nos nombreuses sollicitations.

 Enfin, nos sincères remerciements vont au groupe de 3
e
 année SMPB qui nous a

précédés dans l’élaboration de ce projet.

3

SOMMAIRE
INTRODUCTION .. 4

I. CAHIER DES CHARGES ... 4

1. LES OBJECTIFS DU PROJET .. 4
2. CHOIX TECHNIQUES .. 5

a. Section Bras robot .. 5
i. La carte et le bras robot ... 5

ii. L’interfaçage .. 6

b. Section Leap Motion .. 6

II. CONCEPTION ... 9

1. BRAS ROBOT ... 9
a. Communication .. 9
b. Interface graphique ... 10

2. LEAP MOTION ... 10
a. Choix de conceptions des mouvements interprétés ... 10
b. Organisation du code ... 10

III. REALISATION ... 11

1. BRAS ROBOT ... 11
a. Contrôle via la console ... 11
b. Contrôle par la fenêtre ... 13

2. LEAP MOTION ... 16
a. Contrôle du robot depuis le Leap Motion pas à pas .. 16

i. Description de la réalisation .. 16

ii. Description de l'architecture de notre code ... 16

iii. Test de rafraîchissement des données du Leap Motion ... 19

iv. Difficultés de réalisation rencontrées. .. 19

b. Contrôle du bras-robot par une grille de morpion virtuelle ... 19
i. Description de la réalisation .. 19

ii. Description de l'architecture du code ... 19

iii. Difficultés de réalisation rencontrées. .. 22

IV. MODALITES DE VALIDATION ... 23

1. VALIDATION DU PROGRAMME LEAP PERMETTANT DE CONTROLER LE BRAS ROBOT PAS A PAS 23
2. VALIDATION DE L'ALGORITHME LEAP PERMETTANT DE JOUER AVEC UNE GRILLE VIRTUELLE .. 25
3. VALIDATION BRAS-ROBOT .. 26

V. APPORTS PERSONNELS ... 27

CONCLUSION .. 29

BIBLIOGRAPHIE .. 30

ANNEXE 1 : MACHINE A ETAT POUR LE PROGRAMME ARDUINO ... 31

ANNEXE 2 : MANUELS D’UTILISATION .. 32

ANNEXE 3 : MANUELS DU PROGRAMMEUR ... 35

ANNEXE 4 : DATA SHEETS ... 39

ANNEXE 5 : DIAGRAMME DE GANTT .. 40

file:///D:/Olivier/Phelma/2A/Projet%20Collectif/Rapport_en_construction%20V3.docx%23_Toc385528688

4

Introduction

De nos jours, la robotique occupe une place de plus en plus importante dans l'industrie. Des

bras dans les chaînes de montage aux robots équipés pour la chirurgie, des notions en
asservissement et pilotage deviennent alors indispensables pour les ingénieurs.

Plus modeste, notre projet consistait en la conception d’un système permettant de jouer au
morpion en utilisant un bras robotique piloté par une carte compatible Arduino. L'idée était de
contrôler le bras robot via un ordinateur communiquant avec la carte à l'aide d'une interface
graphique simple et intuitive. L'objectif final était de permettre le pilotage du robot sans contact,
utilisant un capteur de réalité augmentée, le Leap Motion. A terme, la combinaison des deux
technologies pourra permettre une utilisation plus performante des outils de robotique (bras
chirurgicaux commandés par les mains du chirurgien à l’autre bout du monde …).

Ce rapport détaille l'ensemble de nos travaux sur ce sujet ainsi que les résultats obtenus. Il ne
saurait cependant être complet sans une démonstration : Une série de vidéos peuvent se trouver à
l'adresse suivante : http://sirinelli.fr/granola/

Avertissement : Le travail présenté ci-dessous a permis l’élaboration d’un prototype. Le code fourni en
annexe, bien que fonctionnel, n’est en aucun cas optimisé.

Remarque : Ce rapport apporte de nombreux éléments pour continuer ou améliorer le projet. Il est
possible que certains éléments manquent, auquel cas ne pas hésiter à nous contacter.

I. Cahier des charges

Nous ont été fournis au début du projet un bras robot à 6 degrés de liberté DFRobot ROB0036, une
carte DFRduino Romeo V1.1 ainsi qu’un Leap Motion. Les explications relatives à ces différents
composants sont fournies dans ce rapport. Pour les datasheets et manuels, se référer aux annexes et
à la bibliographie.

1. Les objectifs du projet

Le projet se décompose en une suite de quatre objectifs distincts :

- Tout d'abord il est nécessaire de savoir contrôler le bras robot à l’aide d’un programme
développé sous IDE Arduino.

- Le second objectif de mi projet est de pouvoir diriger le bras robot à partir d'une interface
graphique implémentée sur l'ordinateur.

- Nous avons à notre disposition un capteur infra rouge, le Leap Motion, capable de détecter le
bout des doigts présents au-dessus de sa surface. Parallèlement à l'objectif précédent, il faut
donc développer un programme capable de récupérer les informations utiles du Leap Motion
pour contrôler le bras robot pas à pas.

- Enfin, l'objectif final du projet est de relier le Leap Motion au bras robot, selon le synopsis
suivant, dans le but de jouer au à partir des ordres donnés par le mouvement des mains du
joueur.

5

Figure 1 : Schéma de principe du système voulu

2. Choix techniques

a. Section Bras robot

i. La carte et le bras robot

Couplage de la carte Romeo et du robot :

La carte Romeo est une carte ‘Tout-en-un’ spécialement conçue pour la robotique. Elle
bénéficie de la plateforme de développement Arduino. Les cartes de développement Arduino
embarquent un microcontrôleur ainsi que des périphériques d’entrées/sorties. Arduino fournit des
librairies codées en C permettant d’exploiter facilement les périphériques de la carte. Précisément,
nous utiliserons les 6 sorties PWM pour piloter les servomoteurs ainsi que la liaison série pour
communiquer avec l’ordinateur. La carte est alimentée par le 5V de la liaison série, mais les
servomoteurs consomment trop de courant. Il est donc nécessaire de connecter une source
d’alimentation externe sur le bornier Servo Power Input. Nous utilisons donc une alimentation
continue INSTEK (modèle GPS-3030DD) réglé sur 7V, avec une limitation de 1.90A sachant que les
servomoteurs sont généralement alimentés entre 5V et 7.2V.

Sortie de la carte Romeo :

 Comme nous venons de l’expliquer ci-dessus, la carte Romeo envoie au robot les sorties sous
forme de génération de PWM (Pulse-Width Modulation). Cela fonctionne de la manière suivante : la
carte génère un signal rectangulaire à une fréquence de 50 Hz environ dont l’information concernant
l’ordre envoyé au servomoteur réside dans le rapport cyclique. En effet, chaque valeur de ce rapport
cyclique correspond à un angle bien défini. Typiquement on a :

 Figure 2 : oscillogramme et schéma d’une PWM

6

 En ce qui concerne notre projet, on a pu observer la PWM envoyée par exemple au
servomoteur contrôlant la pince du bras de robot à l’oscilloscope. On observe alors les
oscillogrammes suivant :

ii. L’interfaçage

Pour des soucis de portabilité nous avons choisi le langage C++ pour réaliser nos

programmes. En effet, l’autre possibilité était d’utiliser Matlab mais ce logiciel, bien que portable, est
assez cher et par conséquent pas accessible à tous.

Successeur du célèbre langage de programmation C, le C++ orienté objet, forts de ces
nombreuses librairies, dispose d'une myriade de fonctions.

Pour compléter ceci, on va utiliser l’interface de programmation (API en Anglais) Qt qui
fournit de nombreux éléments pour entre autre concevoir des interfaces graphiques.

Loin de l'exploiter à son maximum, nous choisissons d'utiliser Qt pour la nôtre et pour

dialoguer avec le robot via la liaison série. Son grand avantage est une portabilité vers tous les
systèmes d'exploitation ce qui fait partie de nos objectifs. De plus, Qt dispose d’une grande variété
de Widgets (boutons, sliders…) permettant de faire des interfaces graphiques très riches.

Pour programmer rapidement avec Qt, on utilise l'IDE QtCreator présentant l'immense
intérêt de gérer la compilation par lui-même, en plus des facilités classiques d'un IDE.

L’objectif de l’interface graphique est de mettre en place l’espace de jeu sur une fenêtre pour

permettre au joueur d’une part de contrôler le robot en cliquant sur les boutons de la fenêtre et
d’autre part de savoir à quel stade il en est de la partie. De plus, par soucis de précision et également
de pouvoir contrôler le robot sans forcément lui donner une trajectoire correspondant aux positions
de jeu, nous représenterons donc sur cette interface un moyen permettant de contrôler les
servomoteurs indépendamment les uns des autres.

b. Section Leap Motion

 Le choix d’un capteur permettant d’obtenir des informations sur la position de la main et des
doigts dans l’espace s’est imposé par lui-même. En effet, l’école était déjà en possession d’un
capteur qui intègre des traitements permettant d’accéder directement aux informations de position
citées précédemment. Compte tenu des contraintes de temps, la réalisation de ce capteur n’aurait
pas été possible, ce qui justifie l’utilisation d’un élément existant déjà dans l’industrie. Ce capteur
nommé Leap Motion est tout à fait adapté à notre application car il permet de relever avec une
grande précision la position des doigts et de la main, à la différence d’un capteur Kinect qui convient
davantage aux mouvements du corps.

Figure 3 : oscillogrammes de la PWM pour respectivement la pince fermée, la pince semie ouverte (en
possession d’un pion) et ouverte

7

 Le Leap Motion est un système propriétaire que l’on peut connecter par USB 3.0. Il n’est pas
possible de connaitre précisément son fonctionnement interne car le hardware et le software sont
protégés.
 Néanmoins, on parvient à trouver quelques informations sur le fonctionnement de celui-ci.
L’appareil est composé de 2 capteurs CCD tous deux indispensables pour obtenir l’information sur la
profondeur. En d’autres termes, si on masque l’un des capteurs, on perd les données sur un axe.
Le système intègre également 3 DEL IR qui servent à bombarder la zone d’intérêt afin de récupérer
les rayons issus de la réflexion contre la main.

 Les caractéristiques annoncées par le constructeur sont :
Détection : Jusqu'à 10 doigts
Degrés de liberté : 6 (3 Dimensions spatiales + 3 Orientations spatiales)
Précision de la position : 1/100 de mm
Fréquence : 200Hz (précision dans le suivi des mouvements)
Zone d’interaction : 0.227 répartie comme la figure suivante :

Figure 4 : Champ opérationnel de Leap Motion

8

 D’un point de vue du software, le site du Leap Motion donne les différents langages dans
lesquels il est possible de développer une application : C++, C#, Objective-C, Java, JavaScript, Python.
Le choix du langage s’est donc porté sur le C++ afin de conserver le même langage de programmation
que pour le bras robot. L’équipe travaillant sur le Leap Motion évoluait sur Windows. Le choix de
l’environnement de développement s’est alors porté sur Microsoft Visual C++ Express qui a
l’avantage d’être gratuit.

9

II. Conception

1. Bras robot

a. Communication

La communication avec la carte se fait via une liaison série USB. Celle-ci, en théorie,

l’alimente également, mais pour assurer un fonctionnement optimal des servomoteurs, une entrée
permettant d'alimenter ces derniers est prévue sur la carte.

Pour faire communiquer notre programme Qt avec la liaison série et donc la carte, on
utilisera la librairie QextSerialPort fournissant les méthodes permettant d'initialiser la connexion et
de transférer des données. Pour son installation, on se référera au site de la librairie, donné en
annexe dans le manuel du programmeur.

Voici un code typique permettant d'initialiser une liaison série par Qt :

m_serialPort = new QextSerialPort("/dev/ttyACM0"); // établit

la connexion avec le port

if (!m_serialPort->open(QIODevice::ReadWrite |

QIODevice::Unbuffered))

{

 std::cout << "Le Robot n'est pas là";

 exit(EXIT_FAILURE);

}

else

{

 m_serialPort->setBaudRate(BAUD9600);

 m_serialPort->setFlowControl(FLOW_OFF);

 m_serialPort->setParity(PAR_NONE);

 m_serialPort->setDataBits(DATA_8);

 m_serialPort->setStopBits(STOP_1);

}

Remarque 1 : On notera que ce mode minimaliste ne permet pas la gestion d'un autre port série que
celui passé en argument du constructeur (ici /dev/ttyACM0 pour Unix).

Remarque 2 : Pour le cas de Windows, les ports série ont pour nom COMN. Pour connaître le port
auquel la carte est connectée, il suffit d'aller dans le panneau de configuration > gestion de
périphérique et de trouver la carte dans la liste.

Une méthode dans l’interface graphique sera utilisée pour envoyer les données au robot

utilisant la liaison série nouvellement créée. Pour l’appeler on tirera parti des signals et slots
qu’offrent Qt.

10

b. Interface graphique

En ce qui concerne la conception de notre interface graphique, nous avons donc fait le choix,

pour répondre au cahier des charges que nous avons explicité précédemment, de la présenter sous la
forme d’une fenêtre possédant plusieurs boutons : 9 représentant les différentes cases du plateau de
jeu de morpion, 2 autres représentant les deux équipes qui jouent l’une contre l’autre, ainsi qu’un
bouton permettant de commencer une nouvelle partie et ainsi de réinitialiser le jeu.

De plus, afin de contrôler le bras de robot pour des mouvements qui ne font pas forcément
partie du « mode de jeu » en tant que tel et conserver une autonomie de déplacement du robot,
nous avons décidé de mettre en place 6 sliders reliés chacun à un servomoteur du bras. De plus, ces
sliders sont reliés à des afficheurs LCD permettant d’afficher la valeur de l’angle auquel se trouve
chaque servomoteur.

Finalement, afin de pouvoir se remettre en position de jeu après n’importe quel mouvement,
nous avons créé un bouton « remise en position de repos » qui permet au robot, comme cela est
indiqué dans le texte du bouton, de remettre le robot en position de repos.

Nous avions également pour projet de mettre en place un bouton permettant la
réinitialisation des coordonnées correspondant aux cases de jeu etc, mais par manque de temps,
nous n’avons pas pu mener cela à bien.

Tout ce qui vient d’être énuméré a été développé en C++ sous l’IDE Qt comme spécifié dans
le cahier des charges.

2. Leap Motion

a. Choix de conceptions des mouvements interprétés

 L’objectif initial du module construit autour du Leap Motion était d’interpréter les
mouvements des mains afin que le robot bouge en conséquence. De nombreuses possibilités
s’offraient à nous.
 D’abord nous avons pensé à traduire un mouvement de translation venant du Leap Motion
en une combinaison de rotations pour le robot. Les équations permettant de formaliser ce problème
sont des équations de cinématique inverse. Ces équations ont une formulation différente selon le
nombre de degrés de liberté du robot. De plus, l’établissement de ces équations n’est pas chose
aisée car ce sujet est encore un domaine de recherche. Dans l’hypothèse où ces équations de
cinématique inverse avaient été établies, des problèmes de temps de calculs auraient pu intervenir.
 Nous avons donc préféré nous pencher vers deux possibilités plus simples, plus facilement
implémentables et donc avec une probabilité de réussite plus grande. La première alternative
consistait à commander chaque servomoteur individuellement à l’aide de 2 mains. Le système étant
conçu pour droitier, la main gauche appellerait le numéro du moteur et la main droite en contrôlerait
la déviation angulaire par un mouvement de translation verticale. La deuxième possibilité envisagée
était plus spécifique au jeu du morpion. Le principe était de créer un damier virtuel sur lequel on
pourrait sélectionner les cases du jeu en les « pinçant ». Le robot n’aurait alors plus qu’à interpréter
cet ordre venant du Leap Motion.
 Finalement, ce sont les deux dernières possibilités qui ont été retenues car elles tenaient
dans les contraintes de temps et de faisabilité.

b. Organisation du code

Pour développer notre code, nous utilisons les librairies du kit de développement ou SDK

(Software Development Kit) fournies par le site du Leap Motion. Ces librairies contiennent les

11

éléments de base permettant récupérer les informations provenant du capteur. Ce code est en
grande partie protégé et donc impossible à analyser. Néanmoins, il est suffisamment commenté pour
en connaitre l’utilisation. Le SDK du Leap Motion (ou Leap SDK) contient les solutions générés pour
Visual C++ pour les versions 2008, 2010 et 2012.
Toutes les classes que nous utilisons sont prototypées dans la librairie leap.h. Les classes nécessaires
au fonctionnement de base de notre code sont les suivantes :

class Controller : public Interface

class Listener

La classe Controller hérite de la classe Interface qui est de type assez obscur
(LEAP_EXPORT_CLASS). Elle permet de créer un objet permettant de récupérer les trames de
données du Leap Motion. Cependant, les données ne peuvent être utilisées qu’à travers la méthode

Listener. Toutes les méthodes de la classe Controller prennent en argument une référence sur
la classe Listener. Il y a plusieurs façons de créer un objet Controller. On peut utiliser soit :

- le constructeur Controller(Listener& listener) qui permet d’instancier l’objet
Controller.

- Le constructeur par défaut Controller() suivi de la méthode bool

addListener(Listener& listener) qui permet d’ajouter un listener à la liste
Controller.

Une fois l’objet créé, on peut utiliser la méthode la plus importante qui permet de récupérer les

informations du Leap Motion : Frame frame(int history = 0) const. Cette méthode
renvoit par défaut la dernière trame venant du capteur. Cette méthode stocke également les 60
trames passées en modifiant l’argument de la méthode.

La classe Listener contient les méthodes qui sont appelées par la classe Controller. Ces
méthodes sont appelées notamment lors de l’initialisation, la connexion et la déconnexion du Leap
Motion. Une autre méthode particulièrement utile est la méthode onFrame(const

Controller&). C’est dans cette méthode que s’effectuera le rafraîchissement des données
(trames). Elle présente une boucle intrinsèque, que l’on peut considérer comme un thread.

L’implémentation du code se fera donc dans une nouvelle classe nommée SampleListener qui
héritera de la classe Listener. On pourra ainsi surcharger les méthodes existantes et en créer de
nouvelles.

III. Réalisation

1. Bras robot

a. Contrôle via la console

Nous avons commencé par nous intéresser à la carte et au bras, afin de nous les approprier

et d'apprendre à les contrôler.

Après s'être familiarisés avec le robot, nous avons étudié les solutions permettant la communication
entre l'ordinateur et la carte. Nous avons alors élaboré un programme Arduino que nous
avons téléversé sur la carte qui interprète les instructions que nous lui envoyons par la liaison série.
Ces instructions prennent la forme d'une trame dont nous spécifions ci-dessous la composition.

12

 & 1 1 0 0
début de trame Numéro de Servo Valeur d'angle à donner au servomoteur

Ainsi la trame ci-dessus positionne le servo 1 à 100°. A noter qu'une valeur non comprise entre 0 et
180° induit une erreur qui repositionne le robot à une position définie que nous qualifierons de
« position de repos » car cette dernière ne nécessite pas d'effort pour être maintenue. Il en est de
même pour un numéro de servo non compris entre 1 et 6.

Notre programme Arduino a donc pour rôle de recevoir cette trame et de l'interpréter. Son
fonctionnement est donné par la machine à état donnée en annexe 1.

Pour tester le fonctionnement du programme et les réactions induites, ainsi que le calibrer, il
a été nécessaire de conduire une série de tests. Ces tests seront détaillés dans la partie adéquate.
Pour les réaliser nous avons utilisé un programme sous forme de terminal permettant d'écouter et
d'envoyer des données sur la liaison série. Ce programme sur Linux s'appelle Minicom. Son
installation sur une distribution comme Ubuntu est simple, il suffit d’ouvrir un terminal et d’écrire :

$ sudo apt-get install minicom

Pour Windows, le programme HyperTerminal fonctionne de manière analogue.

Comme on peut le voir sur les figures suivantes, la carte répond en renvoyant les caractères
envoyées (en excluant le caractère de début de trame '&') puis complète par « Fin de Trame » une
fois qu'une trame complète a été transmise.

Figure 5 : Trames échangées avec la carte Arduino

Une fois le programme Arduino testé, on pouvait passer à l'implémentation de la liaison série via Qt
et à l’interface graphique.

13

b. Contrôle par la fenêtre

Etablissement de la connexion avec le robot

Cette partie a été effectuée en parallèle avec l’élaboration de la fenêtre graphique. La liaison
série est initialisée dans le constructeur de la fenêtre utilisant QextSerialPort et le code minimal
fourni dans la partie conception.

Mise en place de la fenêtre :

 Concernant la partie interface graphique, nous avons donc réalisé le projet en codant en C++
sous l’IDE Qt nous permettant ainsi d’utiliser de nombreuses librairies déjà toutes prêtes et
notamment des librairies de Widgets pour créer des interfaces graphiques.
 Le point de départ a été de créer une fenêtre en tant que telle, comme expliqué dans la
partie conception. Nous avons alors obtenu une fenêtre de ce type :

Rendre la fenêtre fonctionnelle :

 A ce point-là de la conception, la fenêtre n’est pas du tout fonctionnelle car les boutons et
autres widgets n’ont aucune fonctionnalité et ne sont reliés à aucune tâche. Il a donc fallu créer des
slots, c’est-à-dire des méthodes (ou plus simplement des fonctions) permettant d’effectuer les
actions souhaitées. Ensuite ces slots sont connectés à des signaux émis lors d’actions sur les widgets.
Par exemple, lorsque l’on déplace le curseur du slider, un signal est envoyé et va donc appeler le slots
qui va modifier la valeur affichée sur l’afficheur LCD (à droite du slider) pour que celle-ci corresponde
bien. Ou encore, lorsque l’on clique sur le bouton « A1 », un signal est émis et va appeler le slot
donnant l’ordre au robot de déposer le pion sur la case A1. Mais à ce stade-là, le robot n’est pas
encore relié à l’interface graphique. Ainsi, tout ordre donné au robot correspond juste à un
changement de coordonnées envoyées sur les sliders de l’interface graphique.

Mise en place des règles du jeu :

 Le jeu va être régulé par l’interface graphique, ainsi, bien que chaque bouton ait une
fonctionnalité, il faut appliquer des règles derrière afin qu’une partie puisse bien se dérouler et qu’il
ne puisse pas y avoir tricherie (ou du moins réduire ce risque au maximum) et que le joueur puisse
suivre le déroulement de la partie correctement. Il a donc été nécessaire de modifier les slots que
nous avons créés pour imposer les règles du jeu aux utilisateurs.

Figure 6 : interface graphique du jeu de morpion

14

Ainsi, lorsqu’un pion aura été récupéré, le joueur devra impérativement déposer son pion sur une
case, et c’est un joueur de l’autre équipe qui devra ramasser un pion, sinon une fenêtre contenant un
message d’erreur s’affichera à l’écran. De plus, lorsqu’un pion sera déposé sur une case du plateau
de jeu, celle-ci s’affichera de la couleur du pion déposé et sera désactivée, c’est-à-dire qu’il sera
impossible de déposer un autre pion à cet endroit. Ainsi, pour une partie entamée, la fenêtre de jeu
ressemblera à ceci (cf figure suivante) :

Liaison de l’interface graphique avec le bras de Robot :

 La création du lien entre le robot et l’interface graphique a également été développée sous
Qt. Elle utilise ici encore des librairies spéciales de Qt permettant de faciliter son utilisation.
 La liaison se fait ici encore à l’aide de slots qui ont été créés pour faire en sorte que lorsque
l’on bouge un slider, une donnée de type adaptée soit envoyée au robot via liaison série. Par
exemple, lorsqu’on modifie la valeur du slider 1 pour lui donner un angle de 45°, l’information
envoyée au robot est de la forme « &1045 » selon la syntaxe que nous avons défini précédemment.
Cet envoi est réalisé par une méthode présente dans la classe MaFenetre qui gère l’interface
graphique.
Ainsi, le contrôle du robot se fait par six fonctions différentes appelées dès qu’un slider a été modifié
et envoyant l’ordre directement au robot via port série.
 De plus, afin de vérifier que le robot est bien connecté à l’interface graphique via port-série,
nous avons mis en place un voyant en haut de la fenêtre graphique. Celui-ci sera vert si le robot est
bien connecté et rouge si la connexion n’est pas établie (un message d’erreur sera également affiché
afin d’expliquer la procédure à suivre et pour les éventuelles personnes souffrant de daltonisme qui
voudraient jouer au morpion avec notre interface graphique).

Figure 7 : interface graphique du jeu de morpion en pleine partie

15

Principales difficultés rencontrées :

 La mise en place des Widgets ainsi que leur disposition sur la fenêtre et la création des slots
en tant que tels n’a pas été très difficile. La principale difficulté a été de respecter l’enchaînement
des joueurs et de savoir à quel tour de la partie nous nous trouvions. En effet, pour éviter la tricherie,
il a fallu créer une variable joueur permettant de déterminer quel joueur doit jouer et si oui ou non il
a déjà tiré un pion. En effet, quand arrive le moment de ramasser un pion, il faut que le robot ait
déposé le pion qu’il avait ramassé au tour d’avant et que ce ne soit pas la même équipe que celle qui
vient juste de jouer. Pour cela, nous avons choisi d’attribuer 5 valeurs possibles à notre variable
joueur : une disant que l’équipe 1 vient de ramasser un pion, une autre explicitant que l’équipe 1
vient de poser un pion, et par symétrie, deux autres valeurs correspondant à l’équipe 2. La cinquième
valeur possible est donnée lorsque l’on réinitialise la partie et qu’aucun pion n’a encore été pris ou
déposé sur le plateau de jeu.
 Une autre difficulté a été de gérer le fait qu’à chaque tour, le robot ne doit pas aller chercher
le pion au même endroit. En effet, le plateau de jeu est comme sur la figure ci-dessous, on peut voir
que les pions sont posés les uns à la suite des autres en attendant d’être ramassés. Il faut donc créer
une variable pour chaque équipe permettant de déterminer combien de pions ont été posés par
l’équipe pour savoir où aller chercher le suivant.

Figure 9 : photo du plateau de jeu réel (avec le robot)

Figure 8 : Message d’erreur et fenêtre montrant que le robot n’est pas connecté

16

Enfin, le travail le plus long lié à cette partie du projet, a été de déterminer les angles que l’on
devait donner à chaque servomoteur du bras pour se déplacer sur le plateau de jeu. En effet, n’ayant
pas eu le temps de trouver les équations de cinématique inverse, il nous a fallu déterminer de
manière empirique la position de chaque servomoteur pour chaque position possible du robot, soit
pour les 9 cases du jeu plus les 10 positions correspondant au ramassage des pions sur le côté. De
plus, un des principaux problèmes rencontrés face à cela est le manque de répétabilité des
mouvements par le bras de robot. En effet, les servomoteurs sont plutôt imprécis et il est difficile de
réussir à obtenir du bras de robot de se placer plusieurs fois exactement au même endroit sur le
plateau.
 Enfin, une précaution fondamentale qu’il a fallu prendre, est de faire bien attention à ce que
les ordres envoyés au robot se fassent dans un ordre précis afin que le bras ne balaye pas tous les
pions déjà déposés lors de son passage. Par exemple, si une fois que le pion a été ramassé, le robot
pivote d’abord son premier servomoteur relié à la base pour tourner alors que la pince est contre le
plateau, tous les pions qui étaient au départ sur le plateau de jeu sont déplacés par son mouvement.
Il est donc très important de respecter un ordre précis comme par exemple de commencer par se
redresser puis ensuite tourner pour se placer dans la bonne direction.
 De plus, par soucis d’esthétique et de limitation de « gestes » trop brusques du robot, après
chaque mouvement (ex : ramasser pion, ou déposer pion en A2), le robot se remettra en position de
repos en attendant d’avoir connaissance de l’ordre suivant. Cela ajoute un délai supplémentaire pour
le jeu (car impose des mouvements en plus) mais protège le robot de certains pics de consommation
de courants supplémentaires qui pourraient l’endommager.

2. Leap Motion

a. Contrôle du robot depuis le Leap Motion pas à pas

i. Description de la réalisation

 L'objectif de cette partie, est de transmettre au robot le numéro du servomoteur à bouger
ainsi que son angle de rotation.
 Pour cela, nous choisissons la convention suivante pour l'utilisateur :

- Le nombre de doigts de la main gauche visibles pour le Leap Motion code le numéro du
servomoteur.

- La main droite quant à elle ne doit avoir qu'un doigt visible (par conséquent l'index pour une
question ergonomique). La hauteur de l'index par rapport au Leap Motion est alors
proportionnelle à l'amplitude de l'angle de rotation du servomoteur en question.

ii. Description de l'architecture de notre code

 Attributs ajoutés à la classe SampleListener

Nous avons créé trois structures contenues dans le fichier Structures.h.

 Une structure INFOS_LEAP :
typedef struct {

 int nbr_doigts ;

 float x ;

 float y ;

 float z ; } INFOS_LEAP;

17

Où nbr_doigts correspond au nombre total de doigts visibles par le Leap Motion, qui est
en fait le numéro du servomoteur à contrôler. En effet, quand la main gauche ne montre
aucun doigt, l'index de la main droite, lui, est toujours visible. Dans ce cas, le nombre de
doigts total visibles est de 1, c'est donc le servomoteur numéro 1 qu'il faut contrôler. En
résumé, 0 doigt visible pour la main gauche correspond au servo numéro 1, 5 doigts visibles
sur la main gauche indiquent le contrôle du servo moteur numéro 6.
Les flottants x, y et z correspondent aux coordonnées de l'index de la main droite.

 Une structure INFOS_ROBOT :
typedef struct {

 int servo ;

 int angle ; } INFOS_ROBOT;

Cette structure contient les informations à transmettre au robot. C'est-à-dire le numéro du
servomoteur à bouger, soit servo, et l'amplitude de son angle, soit angle.

 Une structure SERVO :
typedef struct {

 int numero;

 int a_min;

 int a_max ; } SERVO;

La structure SERVO contient toutes les informations utiles à la description d'un servomoteur.

C'est-à-dire son numéro, soit le champ numero, et les angles maximum qu'il peut atteindre,
soit a_min et a_max. En effet tous les servomoteurs n'ont pas une amplitude de 0 à 180
degrés.

Nous avons alors complété la classe SampleListener de 3 attributs supplémentaires qui sont :
- Les informations sur la commande passées par les doigts de l'utilisateur :

INFOS_LEAP infos_leap ;

- Les informations à transmettre au robot : INFOS_ROBOT infos_robot;

- Un tableau contenant les 6 servomoteurs : SERVO tab_servo[6];

 Méthodes ajoutées à la classe SampleListener

 De manière à organiser notre code au maximum, nous avons créé 5 méthodes dans la classe
SampleListener :

virtual void init_tab_servo();

Cette méthode permet d'initialiser le contenu du tableau de servo.

virtual int mains(const Controller&);

La méthode mains permet de différencier la main droite de la main gauche. En effet, le Leap Motion
attribue un numéro aux mains dans leur ordre d'apparition. Pour ne pas rajouter de convention au
joueur (par exemple : avancer la main droite en premier), il est nécessaire de connaitre le numéro
attribué à la main droite pour ensuite récupérer les coordonnées de l'index contrôlant l'amplitude de
l'angle du servomoteur.
Si deux mains sont effectivement visibles par le Leap Motion, alors la méthode distingue la main
droite de la main gauche par le calcul de la position moyenne en x des doigts.
Si une ou plus de deux mains sont détectées par le capteur, un message avertit l'utilisateur.

18

virtual void infos_doigt_commande(const Controller&,int

main_d);

La méthode infos_doigt_commande complète la structure attribut infos_leap de la classe

SampleListener. Elle remplit également le champ servo de la structure attribut
infos_robot.

virtual void calcul_angle(const Controller&);

Comme son nom l'indique, la méthode calcul_angle calcule l'angle à renvoyer au servomoteur à
partir de la coordonnée en z de l'index de la main droite.
Le calcul se fait de la manière suivante :
Nous avons déterminé des amplitudes extrêmes qui sont d'une part détectables par le Leap Motion
et d'autre part ergonomique pour l'utilisateur. Ces amplitudes sont stockées dans les variables
globales Z_MAX et Z_MIN (ici, respectivement 400 et 100 millimètres). L'angle maximal atteignable
par le servo désigné correspond à Z_MAX et l'angle minimal à Z_MIN. A partir de ces liens et
l'amplitude de l'index droit, nous pouvons facilement déterminer l'angle à transmettre.

virtual INFOS_ROBOT get_infos_robot();

La méthode get_infos_robot est un accesseur permettant de retourner l'attribut
infos_robot contenant les informations utiles au contrôle du bras robot.

Modification de la méthode onFrame de la classe SampleListener

virtual void onFrame(const Controller&);

Cette méthode est appelée dans le main et tourne en boucle, c'est donc elle qui traite directement
les données envoyées par le Leap Motion. Ainsi, nous l'avons modifiée pour qu'elle exécute notre
algorithme.
onFrame commence par appeler la méthode mains pour distinguer la main droite de la main
gauche.
Si 2 mains ont bien été détectées par la méthode mains alors onFrame appelle d'une part la

méthode infos_doigt_commande et d'autre part la méthode calcul_angle.

Contenu du main

 Lors de l'exécution du main, celui-ci crée des objets controller et listener puis initialise le
tableau de servo par l'appel de la fonction listener.init_tab_servo(). Ensuite la méthode
onFrame est appelée par l’objet controller et tourne en boucle tant que l'utilisateur n'appuie pas
sur la touche "entrée".

19

iii. Test de rafraîchissement des données du Leap Motion

Le site du Leap Motion annonce une vitesse de rafraichissement d’environ 200 Hz. Or les

mesures qui ont été réalisés dans la méthode onFrame ne sont pas en accord avec ces chiffres. Les
mesures ont été réalisées en écrivant un fichier sans affichage à l’écran. Voici le résumé des
mesures en Hz :

Valeur minimale : 23.8095 Hz
Valeur maximale : 32.2581 Hz
Valeur moyenne : 27.8167 Hz
Ecart type : 1.1537 Hz

iv. Difficultés de réalisation rencontrées.

 Nous avons passé un temps certain à comprendre le fonctionnement des méthodes déjà
codées dans le SDK. En effet, seul le fichier sample.cpp et les fichiers .h sont visibles. Non n'avons
donc pas eu accès directement au code des méthodes, les autres fichiers .cpp étant protégés. Ceci ne
nous a pas permis de comprendre précisément le rôle de chaque classe.

b. Contrôle du bras-robot par une grille de morpion virtuelle

 Ayant créé une interface graphique pour contrôler le bras-robot. Nous avons trouvé
intéressant de développer un autre programme qui permettrait à l'utilisateur de jouer au morpion
depuis une grille virtuelle.

i. Description de la réalisation

 Nous avons constaté que lorsque nous collions deux de nos doigts, le capteur ne détecte
alors aucun doigt. Nous avons donc basé notre algorithme sur cette constatation. En effet, le joueur
sera capable de sélectionner une case en passant de deux doigts écarté à deux doigts collés. Le Leap
Motion traduit cela comme un passage de deux à zéro doigt.

 Pour commencer une partie, le joueur devra d'abord définir la localisation de sa grille
virtuelle dans l'espace en sélectionnant en premier l'angle en haut à gauche puis l'angle en bas à
droite. Par convention la grille de morpion est définie verticalement et face au joueur, c'est-à-dire
selon les coordonnées x et z.
Ensuite la partie peut commencer. La case survolée par le joueur est affichée à l'écran et le joueur
referme les doigts lorsqu'il veut sélectionner la case. Cette dernière est alors stockée dans les
attributs de la méthode SampleListener et est transmise au robot.
A tout moment, le joueur peut réinitialiser la partie en avançant ses deux mains devant le capteur.

ii. Description de l'architecture du code

Attributs ajoutés à la classe SampleListener :

 Cette fois, nous avons ajouté une structure au fichier Structures.h :

20

 La structure CASE :
typedef struct {

 float x_max;

 float x_min;

 float z_max;

 float z_min;

 int numero;} CASE;

Cette structure regroupe tous les paramètres permettant de décrire une case. C'est-
à-dire, son numéro par le champ numero et l'espace qu'elle occupe par les champs
x_max, x_min, z_max, z_min.

Nous avons donc complété la classe SampleListener avec les attributs suivants :
- Un tableau contenant les 9 cases de la grille de morpion : CASE tab_cases[9];
- Le numéro de l'étape en cours suivant la représentation schématique de l'algorithme (voir plus

loin) : int etape;
- Un entier représentant le numéro de la case survolée pendant le jeu : int

num_case_current;

- Un entier représentant le numéro de la case sélectionnée (C'est cet attribut qui est envoyé au
robot) : int num_case_select;

- Des flottants permettant de stocker les coordonnées de l'angle en haut à gauche (x1, z2), les
coordonnées de l'angle en bas à droite (x2,z1) et les coordonnées des points sélectionnés

pendant le jeu (x,z) : float x1, x2, z1, z2, x, z;
- Un entier représentant le nombre de doigts vu à la boucle précédente : int p_nbr_d;

Méthodes ajoutées à la classe SampleListener :

virtual void init_etape(int a);

La méthode init_etape permet de mettre à jour l'attribut etape.

virtual void init_tab_cases(float x1, float x2, float y1,

float y2);

La méthode init_tab_cases initialise le tableau des cases à partir de coordonnées des angles de
la grille.

virtual void init_coor();

La méthode init_coor met des valeurs improbables aux attributs coordonnées de manière à
s'assurer que ces dernières ont été modifiées au moins une fois avant de les utiliser pour les calculs.

virtual int get_case_current(float x, float y);

La méthode get_case_current affiche à l'écran le numéro de la case survolée par l'utilisateur à
partir des moyennes de la position de ses deux doigts en x et z. Il stocke également ce numéro dans

l'attribut num_case_current.

virtual int get_case_select(float x, float y);

La méthode get_case_select fonctionne sur le même principe que la méthode

get_case_current mais stocke le numéro dans l'attribut num_case_select.

21

virtual float average_x(FingerList fingers);

La méthode average_x calcule la position moyenne en x des doigts fournis en argument.

virtual float average_z(FingerList fingers);

La méthode average_z calcule la position moyenne en z des doigts fournis en argument.

virtual void init_p_nbr_d();

La méthode init_p_nbr_d permet d'initialiser l'attribut p_nbr_d à zéro.

virtual int getCaseSelect();

La méthode getCaseSectect est un accesseur qui permet de récupérer la valeur de l'attribut
num_case_select.

Modification de la méthode onFrame de la classe SampleListener :

 La méthode onFrame a été modifiée de manière à implémenter l'algorithme représenté par
le schéma ci-dessous :

Figure 10 : Schéma de principe

22

Contenu du main :

 Lors de l'exécution du main, celui-ci crée des objets controller et listener puis
appelle les méthodes d'initialisation : init_p_nbr_d, init_etape, init_coor. Ensuite le
main appelle la méthode onFrame qui tourne en boucle tant que l'utilisateur n'appuie pas sur la
touche "entrée".

iii. Difficultés de réalisation rencontrées.

 Suite à l'implémentation du premier programme, nous n'avons pas eu de mal à reprendre en
main les méthodes déjà codées dans le SDK. La majeure difficulté de ce programme a été
l'élaboration de l'algorithme. En effet, chaque étape nécessite beaucoup de conditions qui ont
entrainé de nombreuses reprises du code pour être sûr qu'aucune situation n'ait été oubliée.

Ce système a finalement bien été implémenté, mais dans un second programme où l’interface
graphique a été supprimée. En effet, il existe un problème de communication entre les deux
éléments, problème que nous n’avons pu résoudre. Néanmoins il est malgré tout parfaitement
possible de jouer au morpion avec ce programme.

23

IV. Modalités de validation

1. Validation du programme Leap permettant de contrôler le bras robot
pas à pas

 Pour valider le fonctionnement de l'algorithme permettant de jouer au morpion avec une
grille virtuelle, nous avons choisi de présenter l'affichage sur la console en parallèle de la position des
mains associées en photo.

 Aucun contrôle si aucune main.

 Trois doigts à gauche signifient contrôle du servomoteur 4.

 Doigt à droite plus bas que précédemment, l'angle a
diminué de moitié (passant de 20 à 10).

24

 Doigt à droite plus haut que précédemment mais au-dessus
de Z_Max (400), ici 444. L'angle calculé reste égal à la valeur
maximale de l'angle atteignable par le servomoteur 4.

 Si une seule main, aucun ordre passé au robot.

 Message d'erreur si plus de deux mains.

 Message d'erreur si plus d'un doigt à droite.

25

2. Validation de l'algorithme Leap permettant de jouer avec une grille
virtuelle

Pour valider le fonctionnement de l'algorithme permettant de jouer au morpion avec une grille
virtuelle, le principe est le même.

 Deux mains détectées.

 Sélection du premier angle.

 Sélection du deuxième angle.

 Attente du choix de la case.

26

 Sélection de la case.

 Cas où la main sort de la grille.

3. Validation bras-robot

Au terme de ce projet, l’interface graphique reliée au robot est totalement fonctionnelle. Une
partie de morpion peut être jouée et se dérouler de manière très satisfaisante (bien que prenant plus
de temps que si les joueurs jouaient à la main mais permettant de ne pas avoir à déplacer les pièces
soi-même). Le déroulement du jeu se déroule notamment sans tricherie possible de la part des
joueurs. Il faut cependant à la fin de chaque partie que les joueurs remettent eux-mêmes les pions
dans l’espace prévu à cet effet afin de pouvoir recommencer une nouvelle partie.
 En revanche, la fonctionnalité permettant de réinitialiser les coordonnées des cases n’a pas
été implémentée. Le code est alors figé et ne permet de jouer que sur le plateau qui a été conçu à cet
effet et ne permet pas la mobilité de jeu. Cela est dû au fait que, par manque de temps, nous n’ayons
pas pu mettre en place les équations de cinématique inverse.

Sur la vidéo de présentation du projet, vous trouverez une démonstration du fonctionnement
complet du bras robot, piloté par l’interface graphique et par le Leap Motion.

27

V. Apports personnels

Fanny :

Pour ma part, je me suis principalement intéressée au développement du code pour
implémenter l’interface graphique. Ayant choisi de développer cette fenêtre en C++ sous l’IDE Qt, il a
donc été nécessaire de comprendre comment fonctionne la programmation orientée objet (car
quand nous avons commencé le projet nous n’avions pas encore commencé les cours de java) et
apprendre la syntaxe du C++. Ce projet m’a donc permis d’apprendre beaucoup en termes de
compétences en programmation.
 Par ailleurs, coder une interface graphique est très agréable car il est possible à tout moment
d’avoir un aperçu concret de ce que nous sommes en train de mettre en place, ce qui est rarement le
cas (du moins au cours de notre formation en école). De plus, être dans le cadre de la mise en place
d’une interface graphique pour un jeu de morpion avait vraiment un aspect ludique qui rendait le
projet bien plus motivant.
 Au cours de ce projet, nous sommes vraiment partis de quasiment rien pour arriver à un
système fonctionnel permettant de jouer au morpion avec un bras de robot. Nous avons ainsi pu
mener une démarche de conception quasiment de A à Z. Nous avons dû faire la quasi-totalité des
choix techniques afin de décider ce qui était le mieux pour nous et pour le bon déroulement du
projet et rédiger un véritable cahier des charges pour notre système. Cela a alors été très instructif et
reflète réellement ce qu’est le métier d’un ingénieur.
 Pour finir, nous travaillions en équipe de 4, et nous avons ainsi pu voir l’importance de bien
séparer les tâches tout en se tenant au courant de l’avancée de chacun dans le projet. En effet, il
nous aurait été impossible d’obtenir un système fonctionnel si nous ne nous étions pas concentrés
chacun sur une tâche bien particulière du projet.
 Pour conclure, je peux donc dire que ce projet me paraît vraiment très important dans notre
cursus d’ingénieur car il permet vraiment de nous donner une idée de ce dont va être fait notre futur
métier. Je pense que c’est un très bon exercice qui nous permet d’apprendre bien plus que si nous
avions eu des cours à la place car on apprend, selon moi, bien plus en pratiquant et en étant
vraiment confronté à un problème réel et concret.

Olivier :

De mon côté, j’ai travaillé de concert avec Fanny pour le fonctionnement du robot via
l’interface graphique. De ce fait, j’ai dû apprendre un nouveau langage de programmation le C++ et à
travailler avec une API. C’est d’ailleurs une expérience assez étrange, on manipule des objets dont on
ne connaît pas du tout le fonctionnement.

Tandis que Fanny nous programmait une magnifique interface graphique, j’ai été en charge
de l’interfaçage avec le robot, en d’autres termes je devais m’assurer que les données envoyées
depuis le programme principal étaient bien envoyées sur la liaison série, reçues et correctement
interprétées par le robot. Pour cela j’ai dû manipuler une librairie inconnue d’une API que je
découvrais, inutile de dire qu’au premier abord c’est assez déroutant mais ô combien formateur sur
le plan de la programmation. La documentation devient alors une seconde bible.

Devant un projet aussi vaste, en dehors du choix de la carte et du bras robot nous avons tout
réalisé, le travail d’équipe devient indispensable. Nous étions un groupe dynamique et nous nous
entendions bien, cela a simplifié les choses. La division des tâches et l’efficacité de chacun a permis
d’arriver à un résultat que nous espérons satisfaisants.
 Enfin, ce projet avait un grand frère, un projet réalisé avec le même matériel par un groupe
de SMPB 3A. Nous avons pour commencer pris connaissance de leur travail, qui nous a aidés à nous
familiariser avec Arduino. J’ai alors réalisé que si notre projet devait être continué, nous devions
réaliser un rapport le plus complet et le plus exhaustif complet pour permettre à nos potentiels

28

successeurs de partir d’un bon pied, cela vaut aussi pour le code que nous espérons suffisamment
commenté.
 En conclusion, et bien que ce projet soit plus court qu’un projet ingénieur classique, il nous a
permis de faire face à des problèmes concrets de conception, tout en nous donnant un retour très
visuel sur notre travail.

Astrid :

Pour ce projet, je me suis plus particulièrement intéressée à la partie réalisation rattachée au
Leap. Appréhender un nouveau matériel dont on ne connait rien est un peu déroutant au premier
abord. Il a fallu du temps pour se familiariser avec le code fourni et ainsi comprendre de quelle
manière concevoir nos propres algorithmes. Cependant cette démarche est très enrichissante. De
plus le fait d'aboutir à deux types de programmes pour contrôler le bras-robot qui fonctionnent de
manière indépendante est très satisfaisant.

 Concernant le travail en équipe, notre groupe était divisé en deux puisque le projet
présentait deux parties bien distinctes. De ce fait, nous devions nous tenir régulièrement au courant
de l'avancement des sous équipes en organisant des réunions à chaque début de séances. Ce
fonctionnement a renforcé mon habilité à occuper correctement ma place au sein d'une équipe de
travail.

Pierre :

 Tout d’abord d’un point de vue technique, ce projet était essentiellement orienté vers la
programmation. Le langage auquel nous étions confrontés étant le C++, nous pouvions établir des
liens conjointement avec le Java étudié en cours. Mon travail était de travailler sur la compréhension
du code provenant des librairies du Leap Motion ainsi que de développer le code d’interprétation des
mouvements. On pourra reconnaitre qu’il n’est pas très agréable de travailler sur un produit dont le
code est protégé car cela ralentit grandement la facilité de s’approprier le code. Néanmoins, le Leap
Motion était un capteur intéressant à manipuler car les tests pouvaient être réalisés très rapidement.
D’autre part, la division du travail en 2 équipes s’est avérée assez efficace. À l’intérieur de chaque
équipe, un membre travaillait à l’interfaçage des deux parties ce qui a rendu la fusion du projet plus
efficace.
 Sur le plan relationnel, j’ai trouvé le travail avec les autres membres de l’équipe très
agréable. Nous étions très motivés pour travailler sur ce projet et l’ambiance s’en ressentait au sein
de l’équipe.

29

Conclusion : Amélioration possible du projet

Partie interface graphique :

 Dans l’état actuel des choses, le robot est totalement fonctionnel, cependant, au niveau du
code, les widgets sont disposés de manière absolue sur la fenêtre. Cela implique donc que si un
développeur veut changer la taille de la fenêtre pour l’agrandir ou autre, les widgets resteront à leurs
emplacements actuels et n’évolueront pas avec la fenêtre, ce qui peut être très dommageable s’il
décide de diminuer la taille de la fenêtre, faisant ainsi disparaître les widgets. Il pourrait donc être
possible de mettre en place un layout permettant d’avoir un positionnement relatif des widgets et de
ne pas avoir les problèmes explicités.
 Par ailleurs, comme nous en avons déjà parlé précédemment, il pourrait être intéressant de
déterminer les équations de cinématique inverse permettant de mettre en place une plus grande
portabilité du jeu (en pouvant notamment changer le plateau de jeu, autant en positions qu’en
dimensions) et également de mettre en place une fonction permettant éventuellement au robot de
récupérer les pions à la fin de la partie pour les « ranger » à leur place en attendant le début d’une
nouvelle partie.
 Enfin, une dernière amélioration possible serait de mettre des servomoteurs plus puissants
et plus précis permettant une meilleure répétabilité que celle que nous avons actuellement.

Partie damier virtuel :
Permettre l’interfaçage avec la partie graphique.

Niveau compatibilité, nos deux programmes principaux sont fonctionnels sur Linux (testé sur Ubuntu
32 et 64 bits) moyennant l’installation du Leap SDK.

Pour Windows, la compatibilité avec le programme interface graphique est assurée sur des
processeurs 32 et 64 Bits. Pour le programme Leap Motion en revanche, la portabilité n’est pas
réalisée, c’est un point à retravailler.

Avec interface graphique

Fichier/Dossier Rôle

Main.cpp Lancement du programme

MaFenetre.cpp / .h Contient l’objet MaFenetre, notre interface graphique qui gère la
partie et la liaison série

Lib/ Contient la librairie QExtSerialPort

Avec le Leap Motion

Fichier/Dossier Rôle

Main.cpp Lancement du programme

Serie.cpp / .h Contient l’initialisation de la liaison série et la gestion de la partie

Sample.cpp / .h Routine du Leap Motion. Appelle la liaison série.

Include/ & LIBS Contient les librairies du Leap Motion.

Démonstration du projet : Les liens des vidéos ainsi que d’autres ressources liées à notre projet
peuvent se trouver à l’adresse suivante :

http://sirinelli.fr/granola

http://sirinelli.fr/granola

30

Bibliographie

Manuel de la Carte :
http://www.zartronic.fr/doc/DFR/DFR0004/Zartronic_Guide_Utilisateur_RomeoV110_2012.
pdf

Instruction de montage du bras ROB0036
http://www.dfrobot.com/newsletter/assembly%20guide%20for%20rob0036/Instruction_de
_ROB0036.pdf

https://learn.sparkfun.com/tutorials/leap-motion-teardown/all

https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/434-
the-unofficial-leap-faq?420-The-unofficial-Leap-FAQ

http://fr.lookcloseseefar.com/leap-motion-larticle-pour-tout-savoir/

https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/1058-
technical-specifications

www.leapmotion.com

www.tutoprocessing.com/avance/leap-motion-processing /

www.developer.leapmotion.com/documentation/cpp/devguide/Project_Setup.html

www.fr.openclassrooms.com/informatique/cours/programmez-avec-le-langage-c

http://www.zartronic.fr/doc/DFR/DFR0004/Zartronic_Guide_Utilisateur_RomeoV110_2012.pdf
http://www.zartronic.fr/doc/DFR/DFR0004/Zartronic_Guide_Utilisateur_RomeoV110_2012.pdf
http://www.dfrobot.com/newsletter/assembly%20guide%20for%20rob0036/Instruction_de_ROB0036.pdf
http://www.dfrobot.com/newsletter/assembly%20guide%20for%20rob0036/Instruction_de_ROB0036.pdf
https://learn.sparkfun.com/tutorials/leap-motion-teardown/all
https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/434-the-unofficial-leap-faq?420-The-unofficial-Leap-FAQ
https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/434-the-unofficial-leap-faq?420-The-unofficial-Leap-FAQ
http://fr.lookcloseseefar.com/leap-motion-larticle-pour-tout-savoir/
https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/1058-technical-specifications
https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/1058-technical-specifications
http://www.leapmotion.com/
http://www.tutoprocessing.com/avance/leap-motion-processing%20/
http://www.developer.leapmotion.com/documentation/cpp/devguide/Project_Setup.html
http://www.fr.openclassrooms.com/informatique/cours/programmez-avec-le-langage-c

31

Annexe 1 : Machine à état pour le programme Arduino

Annexe 1: Machine à état représentant le programme téléversé sur la carte

32

Annexe 2 : Manuels d’utilisation

- Pilotage du Robot en console

Prérequis :
● Logiciel minicom sur Unix (sudo apt-get install minicom), Hyperterminal sur Windows

● le bras robot dûment connecté avec le programme téléversé

Régler minicom (ou HyperTerminal) de manière à avoir le port correspondant au robot sur écoute
(sur Ubuntu par exemple : /dev/ttyACM0) et à bien envoyer des caractères ASCII (format décimal...)

On communique avec le robot avec la syntaxe suivante :

● On commence par initier une nouvelle trame avec le caractère &

● On entre ensuite le numéro du servo (voir schéma) : ex : 1 pour le servo de base

● On entre ensuite la valeur de l’angle que l’on veut lui donner. Ex : 120

On a donc finalement une instruction de la forme &1120.
Une fois le caractère & détecté, le robot écrit sur la liaison série les caractères reçus :
>> $ &1120 (données expédiées, non visible sur la fenêtre)
>> 120 Fin de Trame (Ce que renvoie le robot)
Il se déplace ensuite jusqu’à la position donnée par pas de 2°. En effet il est illusoire d’avoir une
précision au degré avec le robot.

Ceci permet donc de contrôler le robot à la main.

- Pilotage du Robot par interface graphique

Prérequis :
● Avoir Qt installé (et un environnement UNIX)

● Le bras robot dûment connecté avec le programme téléversé

● s’assurer que le robot est bien connecté sur le port /dev/ttyACM0 (seul supporté pour

l’instant)

Ci-dessous on trouvera une capture d’écran de l’interface.

33

La zone 1 correspond à la zone de jeu en tant que telle. L’appui d’un bouton provoque le
déplacement du robot à la position référencée pour ce bouton (pour l’instant ces positions ne sont
pas modifiables sans toucher au code, mais c’est un axe de développement prévu).
La Zone 2 permet de jouer directement sur la position des 6 servomoteurs du robot. Ainsi un
déplacement du premier curseur provoquera le déplacement du servomoteur de la base. Ceci pourra
servir à l’avenir pour corriger la position du bras robot, voire pour modifier la grille (avec le bouton
réinitialisation des coordonnées, non implémentée pour l’instant).

L’indicateur de connexion en haut à droite permet de savoir si la liaison est opérationnelle
(vert), ou non (rouge). Si le voyant est rouge, il peut être judicieux de relancer le programme et de
s’assurer que le robot est bien connecté sur le port /dev/ttyACM0 (minicom peut fournir cette
information).

Les boutons « Ramasser Pion équipe 1/2 » ordonnent au robot suivant le tour en cours d’aller
chercher un pion dans la réserve de l’équipe considérée. A noter que la sélection d’une case après
usage d’un de ces boutons la colore en la couleur considérée, permettant un suivi de la partie en
temps réel sur l’interface.

- Pilotage du Robot par Leap Motion

Prérequis :

● Avoir le Leap Motion branché et le SDK installé

● Avoir Qt installé sur un environnement UNIX

● Avoir Qt Creator

● Le bras robot dûment connecté avec le programme téléversé

Figure 1 Annexe 2 : capture d’écran de l’interface graphique

34

● s’assurer que le robot est bien connecté sur le port /dev/ttyACM0 (seul supporté pour

l’instant)

Une fois le Leap Motion branché, il faut lancer QtCreator et sélectionner le projet dans le dossier
/ROBOT_SANS_GUI/robot. Il faut ensuite lancer le programme en pressant CTRL R.

Le Leap Motion est alors actif, il faut commencer par désigner les deux angles extrêmes du damier
virtuel pour l’initialiser. Pour cela pincez avec vos doigts dans les airs. Une fois ceci fait, en déplaçant
vos doigts comme cela est montré sur la vidéo du projet vous pouvez sélectionner une case où placer
le pion. Dans la console s’affiche les informations que remonte le Leap Motion, en particulier la case
survolée puis sélectionnée.

35

Annexe 3 : Manuels du programmeur

1. Les outils indispensables

Minicom

Dans le terminal
$ sudo apt-get install minicom

puis pour faire les réglages :
$ minicom -s

Régler le port écouté sur /dev/ttyACM0

Qt Creator

L’IDE incluant l’API Qt est disponible sur le site officiel :
 http://qt-project.org/downloads

Pour installer QextSerialPort :
https://code.google.com/p/qextserialport/

Un README explique bien les modalités d’installation. Voilà un rapide résumé des étapes pour une
utilisation directe:
- Télécharger la librairie
- La placer dans un dossier de votre projet, par exemple LIBS
- Ajouter à votre fichier de projet :

include(LIBS/qextserialport/src/qextserialport.pri)

#include "qextserialport.h" // dans vos .h

Leap SDK

Les librairies pour le Leap Motion sont téléchargeables sur le site officiel, selon votre plateforme.
https://developer.Leap Motion.com/downloads
Pour l’installer et l’utiliser sous Linux, cette vidéo montre la marche à suivre :
http://vimeo.com/71036624

2. Réglages en tous genres

- Utilisation de l’interface graphique sous Windows :
Il faut modifier le code fourni. Ouvrez MaFenetre.cpp et en haut du fichier modifiez :

m_serialPort = new QextSerialPort("/dev/ttyACM0");

en
m_serialPort = new QextSerialPort("COM1");

où COM1 est le nom du port utilisé.
Nota : La même méthode peut être utilisée pour modifier le nom du port sous UNIX.

- Utilisation du programme avec le Leap Motion sur une machine 64 bits
Avec Qt Creator, ouvrez le projet, remplacez x86 par x64, ça doit donner quelque chose comme ça :

win32:CONFIG(release, debug|release): LIBS += -L$$PWD/lib/x64/release/ -lLeap
else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/lib/x64/debug/ -lLeap
else:unix: LIBS += -L$$PWD/lib/x64/ -lLeap

http://qt-project.org/downloads
https://code.google.com/p/qextserialport/
https://developer.leapmotion.com/downloads
http://vimeo.com/71036624

36

- Utilisation du programme avec le Leap Motion sur Windows
Bien que théoriquement possible, cela n’a pas été mené au bout. Néanmoins les librairies spécifiques
à Windows existent, reste à savoir comment dire à Qt de se servir des DLL.

3. Le code

a. Liaison série

L’instanciation de la classe Qextserialport est faite dans le constructeur de MaFenetre pour la partie
interface graphique, à l’initialisation du Leap Motion pour la partie sans interface.

On utilise ensuite une simple fonction sendDataN où N est le numéro du servo concerné pour
envoyer les données au robot suivant le formalisme vu dans le rapport. Pour mémoire il faut
s’exprimer à lui de la manière suivante :
& N ANGLE
où N est le numéro du servomoteur à piloter et ANGLE la valeur d’angle à lui donner.

b. Partie code avec Interface Graphique :

Pour obtenir cette partie du code : ouvrir Qt puis sélectionner file>open File or Project et
sélectionner le fichier robot.pro contenu dans le dossier interface_graphique/robot.

Le code se compose de trois fichiers :
- MaFenetre.h : qui définit le prototype de la classe MaFenetre
- MaFenetre.cpp : qui explicite le constructeur de la classe MaFenetre ainsi que les slots créés
- main.cpp : qui instancie la classe MaFenetre et l’affiche

Une particularité du développement de projet sous Qt est qu’il crée un fichier .pro (ici robot.pro) qui
représente une sorte de Makefile permettant de lier les headers aux codes sources et d’inclure les
librairies nécessaires au projet.

Dans notre projet, nous avons notamment besoin de la librairie qextserialport ainsi que de la
configuration qwidget.

MaFenetre.h :

Commençons par le header de notre projet. Il inclut bon nombre de librairies permettant de
mener à bien le projet :

#include <QApplication> -> créationd’une application

#include <QWidget> -> création de widgets

#include <QPushButton> -> création de boutons poussoirs

#include <QSlider> -> création de sliders

#include <QLCDNumber> -> création d’afficheur LCD

#include <QMessageBox> -> création de message d’erreur ou

d’information

#include <qextserialport.h> -> permet de gérer la liaison

série

#include <stdio.h>

37

Ensuite apparait le prototype de la classe MaFenetre qui contient des méthodes publiques :
son constructeur et son destructeur; des slots publics (toutes les méthodes implémentées pour
permettre le déroulement de la partie de morpion) et des attributs privés. Ces attributs sont tous les
widgets présents dans la fenêtre, ainsi que la liaison série et les variables joueur, tour_eq1 et
tour_eq2 permettant le bon déroulement de la partie.

MaFenetre.cpp :

 Cette partie du code est la plus compliquée et, comme vous pouvez le voir, la plus longue.
 Tout d’abord, on a le constructeur de la fenêtre : MaFenetre(). Dans ce constructeur, d’abord
on l’hérite de la classe QWidget pour permettre de créer une fenêtre. Ensuite, on commence par
instancier la liaison port série. Puis on met en place tous les éléments de la fenêtre : d’abord la
fenêtre en elle-même puis ensuite tous les widgets (boutons poussoirs, sliders, …). Enfin, on finit par
connecter à l’aide d’un connect tous les widgets aux slots dont nous avons créé les prototypes dans
le header.

Ensuite viennent les slots. Le tout premier est RemisePosRepos() qui permet, comme son
nom l’indique de remettre le robot en position de repos, mais pour cela, il faut, s’il possède un pion,
qu’il le dépose d’abord d’où le if(...).

Après viennent les slots correspondant à l’action de déposer un pion sur une case du

damier de jeu. Chaque slot est développé de la même façon : d’abord on regarde la valeur de la
variable joueur qui va nous indiquer quel joueur a pris un pion (équipe 1 ou 2) et si le robot possède
bien un pion. La case va alors être coloré avec la couleur du pion sélectionné (bleu pour l’équipe 1 et
noir pour l’équipe 2) grâce à la fonction setStyleSheet(...) et ne pas être modifiée si aucun pion n’est
déposé. Par ailleurs, le code permet de désactiver la case afin qu’aucun autre pion ne puisse être
déposé sur cette même case (setEnable(false)). Enfin, chacun de ses slots se finira par une remise en
position de repos du robot pour plus d’esthétique et pour limiter des pics de courant trop
importants.

Après nous avons les slots de ramassage de pions. Les deux fonctionnent de manière

identique. D’abord on vérifie que le robot n’est pas déjà en possession d’un pion, auquel cas il doit
d’abord le déposer avant d’en ramasser un autre. On vérifie également quel est le joueur qui a joué
au tour précédent et on affiche un message d’erreur si jamais le même joueur essaye de reprendre
un pion à l’aide de QMessageBox. Ensuite, on regarde à quel tour on se trouve à l’aide de la variable
tour_eqn pour savoir quel pion aller chercher et on va le prendre. On affichera également un
message quand l’équipe n’a plus de pion, ce qui ne doit, normalement, pas se produire en mode de
jeu normal.

Ensuite, on a le slot de réinitialisation de la partie : NouvellePartie(). On vérifie que le robot

n’a pas de pion en sa possession (avec joueur). Si c’est le cas il le dépose dans une partie hors du
damier de jeu (pour pas le poser sur une case déjà pleine en cas de partie où le damier est
entièrement rempli). Puis ensuite, toutes les cases sont réinitialisées (setStyleSheet(default) et
setEnable(true)) et on réinitialise les variables de jeu (joueur = 0 ; tour_eqn = 1).

Le slot de réinitialisation des coordonnées : reinit() n’a pas été implémenté ici. Comme

expliqué dans le rapport, nous n’avons pas eu le temps de mettre en place les équations de
cinématique inverse, ainsi cette méthode ne fait qu’afficher un message d’information.

38

Finalement, nous avons les slots d’envoi des données au robot. Dans ces slots on crée un
tableau de caractère dans lequel on stocke la donnée des angles à transmettre (qui sont donnés par
la valeur appliquée aux sliders) + le numéro du servo (donné par le slider modifié) + le caractère
spécial qui détermine le début de la trame envoyée au bras de robot (&).

Petite subtilité qu’il faut bien comprendre : Pour contrôler le robot, on passe par l’intermédiaire des
sliders. En effet, lorsqu’on clique sur une case, le slot en question va modifier la valeur des sliders et
c’est cette modification des sliders qui va engendrer un signal qui va appeler les slots d’envoi de
données au robot via liaison série.

Remarque : l’envoi des données via liaison série se fait séquentiellement. Si le slider1 est modifié puis
le 2, alors le slot sendData1 va s’effectuer (le robot va alors déplacer selon le servo 1) puis ensuite le
slot sendData2 va provoquer le déplacement du servo 2 etc…

main.cpp :

 Dans ce fichier, il n’y a rien de plus à dire si ce n’est que la fenêtre est affichée grâce à la
méthode show().

c. Avec le Leap Motion

Le détail du fonctionnement du détail est explicité directement dans le rapport. La connexion
avec la liaison série se fait au moyen d’une classe Serie contenant l’ensemble des fonctions relatives
à la liaison série et au déplacement du robot. Elle est instanciée au sein de la classe Sample Listener
qui définit la routine que doit exécuter le Leap Motion.

39

Annexe 4 : Data sheets

DFRduino Romeo-All in one Controller V1.1(SKU:DFR0004)

Introduction

DFRduino RoMeo V1.1

RoMeo is an All-in-One microcontroller especially designed for robotics application. Benefit

from Arduino open source platform, it is supported by thousands of open source codes, and

can be easily expanded with most Arduino Shields. The integrated 2 way DC motor driver

and wireless socket gives a much easier way to start your robotic project.

Specification

 Atmega 168/328

 14 Channels Digital I/O

 6 PWM Channels (Pin11,Pin10,Pin9,Pin6,Pin5,Pin3)

 8 Channels 10-bit Analog I/O

 USB interface

 Auto sensing/switching power input

 ICSP header for direct program download

 Serial Interface TTL Level

 Support AREF

 Support Male and Female Pin Header

 Integrated sockets for APC220 RF Module and DF-Bluetooth Module

 Five I2C Interface Pin Sets

 Two way Motor Drive with 2A maximum current

 5 key inputs

 DC Supply：USB Powered or External 7V~12V DC。

 DC Output：5V /3.3V DC and External Power Output

 Dimension：90x80mm

http://www.dfrobot.com/wiki/index.php/File:RomeoV1-1.jpg
http://www.dfrobot.com/wiki/index.php/File:RomeoV1-1.jpg

40

DFRduino RoMeo Pinout

Fig1: Romeo Pin Out

The picture above shows all of the I/O lines and Connectors on the Romeo, which includes:

 One Regulated Motor Power Input Terminal (6v to12v)

 One Unregulated Servo Power Input Terminal (you supply regulated 4v to 7.2v)

 One Servo input power selection jumper

 One Serial Interface Module Header for APC220/Bluetooth Module

 Two DC Motor Terminals – Handles motor current draw up to 2A, each terminal

 One I2C/TWI Port – SDA, SCL, 5V, GND

 One Analog Port with 8 analog inputs – Analog input 7 will be occupied when

connecting "A7" jumper

 One General Purpose I/O Port with 13 I/O lines – 4,5,6,7 can be used to control

motors

 One Reset Button

 Jumper bank to Enable/Disable Motor Control

http://www.dfrobot.com/wiki/index.php/File:Romeo_v1.1_pinout_Diagram.png
http://www.dfrobot.com/wiki/index.php/File:Romeo_v1.1_pinout_Diagram.png

41

Bras robotique à 6 degrés de liberté

Présentation
Le bras robotique à 6 degrés de liberté permet des mouvements rapides, précis et répétables. Il
comprend: une base rotative, une épaule mono-plan, un coude, un poignet et une pince fonctionnelle. Il
est 100% utilisable avec les cartes DFRduino Duemilanove 328, DFRduino Romeo Tout-en-un et les cartes Arduino

Duemilanove standard.

Documentations
 Un article sur le construction de ce robot sur l'excellent site Pobot (que je vous recommande d'ailleurs pour la qualité de son

contenu et l'aide qu'il peut vous apporter)

 La vidéo détaillant l'installation est également à votre disposition

 Le guide d'installation se trouve ici.

Spécifications
 Tension: +4.8-7.2 V

 Courant: 2000mA

 longueur du bras: 320mm

 Poids: 600g

 Liste des composants
 Pince(x1)

 Support en U (x3)

 Support multifonction (x4)

 Support en L (x1)

 Roulement à bille (x3)

 Base rotative (x1)

 Servo Hitec 311 (x2)

 Servo DF05BB (x1)

 Servo DF15MG (x2)

 Servo HS422 (x1)

 Set de vis (x16)

http://www.arobose.com/shop/product.php?id_product=35
http://www.arobose.com/shop/product.php?id_product=42
http://www.arobose.com/shop/product.php?id_product=22
http://www.arobose.com/shop/product.php?id_product=22
http://pobot.org/Construction-d-un-bras-articule.html
http://www.youtube.com/watch?v=1oV0RMaZcms
http://www.arobose.com/docs/Instruction_de_montage_du_bras_Robotique_ROB0036.pdf

42

 Semaines/

Tâches
S4 S5 S6 S8 S9 S11 S12 S13 S14 S15 S16 S17 Bilan

 Diagramme Fonctionnel

Diviser le travail

 Diagramme de Gantt

Liste des tâches

 Montage du Robot

Partie

Communication

Bras de Robot

Apprendre à gérer Qt et à coder

en C++

Code Robot sous Arduino

Code liaison série

Code interface graphique

Partie Leap

Motion

Prise en main du Leap Motion

Compréhension des codes

fournis par constructeur

Apprendre C++

Programme fonctionnel pour le

bras de Robot

Mise en

Commun

Mise en commun du code Leap

Motion avec Robot

Rapports Rédiger le pré rapport

Rédiger le rapport final

Man Power Astrid 6h 4h 5h 4h 4h 4h 8h 4h 8h 5h 6h 12h 70h

Pierre 6h 4h 5h 4h 4h 4h 8h 4h 8h 5h 6h 12h 70h

Fanny 6h 4h 5h 4h 4h 4h 8h 4h 8h 5h 6h 12h 70h

Olivier 6h 4h 5h 4h 4h 4h 8h 4h 8h 5h 6h 12h 70h

Total 24h 16h 20h 16h 16h 16h 32h 16h 32h 20h 24h 48h 280h

Annexe 5 : Diagramme de Gantt

